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A B S T R A C T   

Wearable sensors may allow research to move outside of controlled laboratory settings to be able to collect real- 
world data in clinical populations, such as older adults with osteoarthritis. However, the reliability of these 
sensors must be established across multiple out-of-lab data collections. Nine older adults with symptomatic knee 
arthritis wore wearable inertial sensors on their proximal tibias during an outdoor 6-minute walk test outside of a 
controlled laboratory setting as part of a pilot study. Reliability of the underlying waveforms, discrete peak 
outcomes, and spatiotemporal outcomes were assessed over four separate data collections, each approximately 1 
week apart. Reliability at a different number of included strides was also assessed at 10, 20, 50, and 100 strides. 
The underlying waveforms and discrete peak outcome measures had good-to-excellent reliability for all axes, 
with lower reliability in frontal plane angular velocity axis. Spatiotemporal outcomes demonstrated excellent 
reliability. The inclusion of additional strides had little to no effect on reliability in most axes, but the confidence 
intervals generally became smaller across all axes. However, there was improvement in axes with lower (i.e., 
good) reliability. These data were collected in an out-of-lab setting, and the results are generally consistent with 
previous in-lab data collections, likely due to its semi-controlled nature. Additional out-of-laboratory research is 
required to investigate if these trends continue during truly free-living collections. This study provides support 
for increasing research conducted in out-of-lab data collections, as demonstrated by the good-to-excellent reli-
ability of all axes.   

1. Introduction 

Osteoarthritis (OA) is a debilitating degenerative joint disease that 
affects nearly 20 % of all adults and more than 50 % of those over the age 
of 70 as a result of loss of cartilage and changes in the bone and soft 
tissues, often resulting in joint pain, mobility deficits, and a reduced 
quality of life, (Bombardier et al., 2011). The knee is the most commonly 
affected joint and often undergoes significant changes in the dynamic 
loading environment and movement patterns during walking gait 
(Andriacchi and Favre, 2014; Kaufman et al., 2001). Conventional gait 
analysis systems are often used to study kinematic and kinetic factors 
with respect to disease progression (e.g., knee adduction moment) and 
treatment (e.g., knee flexion angle) (Bonnefoy-Mazure et al., 2020; 
Chehab et al., 2014; Simic et al., 2010) but their impact outside of 
research has been limited given the accessibility of these systems for 
clinical gait analysis of OA. 

Wearable inertial sensors offer an affordable and more broadly 
deployable alternative to collect gait data on those with knee OA 

(Gianzina et al., 2023; Rose et al., 2022). Moreover, these data can be 
collected in more ecologically valid, real-world settings outside of the 
conventional laboratory environment (Brodie et al., 2016; Hillel et al., 
2019). These devices have the ability to measure gait parameters asso-
ciated with knee OA progression, including spatiotemporal parameters 
(e.g. step time), segment angular velocity, and impact accelerations, and 
can do so over longer periods of time to improve how we diagnose and 
treat older adults with OA (Kobsar et al., 2020b). While acceleration and 
angular velocity-based metrics from wearable sensors are not as well 
understood as knee adduction moment and knee flexion, they have 
shown promise in their association to these metrics (Youn et al., 2018), 
as well as assessing TKA recovery (Christiansen et al., 2015; Turcot et al., 
2008), and the presence of OA or OA symptoms (Khan et al., 2013; 
Liikavainio et al., 2010; Na and Buchanan, 2019). Further, more 
research is now integrating these accelerometer and gyroscope data as 
inputs for more complex artificial intelligence, data driven models for 
obtaining gait-related outcomes (Bacon et al., 2022; Tan et al., 2022; 
Wang et al., 2020). Therefore, the reliability of the underlying data 
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derived from wearable sensors, especially in free-living collections, are 
important for a variety of use cases. 

Despite the increased use of these sensors for gait analysis research, 
most data collections still occur in highly controlled laboratory settings 
under the direct supervision of the researcher (Kobsar et al., 2020b). 
These laboratory-based collections often lack real-world relevance and 
results obtained in-lab may not be equivalent to daily out-of-lab walking 
patterns. For instance, Brodie, et al., demonstrated that gait data from 
wearable sensors collected in-lab was different from that of free-living, 
with free-living data having a lower cadence and higher step time 
variability (Brodie et al., 2016). Similarly, Hillel, et al., showed that in- 
lab dual-task walking (e.g., walking while verbally completing math 
problems) in older adults was a better approximation of out-of-lab 
walking than a standard in-lab walking assessment (i.e., single task 
(Hillel et al., 2019)). Therefore, while the reliability of wearable inertial 
sensors has been studied extensively in-lab (Kobsar et al., 2020a, Kobsar 
et al. (2016)), the reliability of sensors in out-of-lab environments is still 
largely unknown. For example, discrete peak outcome variables are 
largely unknown in out of lab settings. These outcome variables are of 
particular interest as they could be used as proxies for gait parameters 
indicative of knee OA severity (e.g., peak frontal plane angular velocity 
as a proxy for varus thrust). Similarly, reliability studies are most often 
completed in healthy younger adults, limiting their applicability to 
populations of older adults with osteoarthritis where pain and fluctua-
tions in pain are prevalent (Kumar et al., 2015; Leardini et al., 2014; 
Parry et al., 2017; Robert-Lachaine et al., 2017, p.), there is a clear gap in 
the literature and the need to assess the out-of-lab reliability for wear-
able sensors over multiple sessions in adults with knee osteoarthritis, 
before the unique advantages of wearable inertial sensors can be fully 
utilized. Therefore, the purpose of this pilot study was to evaluate the 
reliability of wearable sensor data collected across multiple days in out- 
of-lab settings in a knee OA population. To achieve this, we aimed to 
assess reliability of the acceleration and angular velocity waveforms 
obtained from the inertial sensors, as well as discrete impact peaks and 
spatiotemporal parameters over the course of four separate data col-
lections. Additionally, as a simulation of the number of strides that are 
typically captured in a lab setting (e.g., 10–20 strides) as compared to 
out-of-lab collection (e.g. > 50), we aimed to investigate if additional 
strides accumulated in a single walk could improve reliability across 
these collections by evaluating the use of the first 10, 20, 50, and 100 
strides. It was hypothesized that waveform and spatiotemporal reli-
ability would remain stable as stride inclusion levels increased, but 
discrete peak reliability may be improved with more strides, as OA gait 
may be more variable compared to normal gait and hence discrete 
variables may be more stable if they are based on a greater amount of 
strides. 

2. Methods 

2.1. Participants 

As part of a larger study, nine older adults (64.2 ± 7.8 years) with 

moderate-to-severe knee OA were recruited from an orthopedic clinic 
four weeks prior to receiving an intra-articular knee injection (Table 1). 
The study was designed to be a within-subject reliability design with 
four repeated measures and reliability coefficients estimated at 0.90 
with 95 % confidence interval at 0.2, yielding a required sample size of 
n = 10 (Shoukri et al., 2004). While recruiting more participants would 
have ultimately allowed for greater power and smaller confidence in-
tervals, restrictions due to COVID-19 restrictions and weather condi-
tions limited this work to a total of 9 participants (7 male, 2 female). 
Inclusion criteria required participants to be able to walk for 6 min 
without assistive devices, have an average knee pain of > 3/10 on a 
visual analog scale at time of recruitment, uni- or bilateral OA, no pre-
vious lower limb joint replacements, and have no other physical or 
cognitive impairments affecting gait. The Research Ethics Board 
approved the study (HiREB 13247), and all participants provided their 
informed consent before entering the study. 

2.2. Protocol 

For each out-of-lab data collection, two 9-axis wearable inertial 
sensors (IMeasureU Blue Trident, 250 Hz, Vicon Ltd., Oxford, UK) were 
placed on each leg directly onto the skin at the anterior-medial aspect of 
the proximal tibia, identified by palpating anatomical landmarks, using 
semi-elastic straps (Fig. 1a). Sensors were strapped such the x-axis was 
aligned vertically with the long axis of the tibia and the positive y-axis 
was pointing medially on each side. A third sensor was attached at the 
lower back to calculate gait speed. While the IMU sensor used is capable 
of recording acceleration, angular velocity, and magnetic field, only the 
acceleration and angular velocity signals were analyzed for this study. 
Current pain level in the patient’s knee joint was then assessed through a 
numerical pain rating scale (NPRS). Patients were instructed to com-
plete an outdoor 6-minute walk at their self-selected pace at the same 
outdoor circuit located at the hospital (Fig. 1b). Patients were instructed 
to initially begin in a counterclockwise direction for the first lap and 
then walk free-living as they wanted to. Patients continued walking until 
an elapsed time of 6 min. Following the completion of the walk, the 
sensors were removed and data were downloaded for processing. This 
procedure was repeated for a total of four out-of-lab data collections, 
separated by at least 5 days (6.9 ± 0.8 days), with the final collection on 
the day of their intra-articular knee injection. 

2.3. Data analysis 

Following each collection, data were downloaded and uploaded to a 
secure server. Data from the sensors were stored locally on-device dur-
ing collections and digitally synchronized between devices using the 
IMeasureU CaptureU app following the completion of data collection. 
Aligned sensor data were then processed using a custom MATLAB 
(Mathworks, Natick, MA, USA) script, beginning with applying a 4th 
order low pass Butterworth filter at 20 Hz to the data. Next, a principal 
component analysis (PCA) alignment correction, shown to improve axis 
alignment for in-lab straight walking (Hafer et al., 2020; Ruder et al., 
2022), was applied to the data. Briefly, the PCA is used to align each axis 
in line with the segment it is attached to. As most acceleration during 
gait will be in the anterior-posterior axis (AP) direction, it can be 
assumed the first principal component (PC) will be related to the AP 
direction. Similarly, the second PC will be the next most acceleration in 
the vertical (V) direction. Finally, the third PC will be the remaining 
acceleration in the mediolateral (ML) direction. Because of the sensor 
attachment location on the tibia, while the V axis is aligned well, the 
signals from AP and ML axes are often mixed, resulting in not repre-
sentative signal. This PCA method digitally rotates and aligns each axis 
to be more in line with the direction of motion of the segment of interest 
(i.e., tibia). Therefore, all references to axes following this step are 
aligned segment axes. 

Data were parsed into individual strides for the left and right sides, 

Table 1 
Patient Demographics.   

MEAN (STANDARD 
DEVIATION) 

SEX (n) 7 Male, 2 Female 
AGE (years) 64.2 (7.8) 
MASS (kg) 92.0 (21.7) 
HEIGHT (m) 1.72 (0.10) 
BODY MASS INDEX (kg/m2) 30.9 (5.4) 

KELLGREN-LAWRENCE (KL) GRADE OF MOST 
AFFECTED KNEE (n) 

KL1: 0 
KL2: 3 
KL3: 5 
KL4: 1  
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respectively, and normalized to percentage of the gait cycle. For each 
collection, heel-strike and toe-off were identified using angular velocity 
from each sensors to segment the signal into individual gait cycles 
during stance for the duration of the 6-minute walk. Initial contact (i.e. 
heel strike) was found using the AP angular velocity zero-crossing after 
the mid-swing peak to identify a search window before using the 
accelerometer data to identify true initial contact, while toe-off similarly 
used the AP angular velocity zero-crossing in the second half of stance to 
approximate toe-off (Mariani et al., 2013). The signals from each indi-
vidual gait cycle were normalized to 100 data points, representing 
percent of gait cycle, by interpolating each of the signals using the 
interp1 MATLAB function. Next, each individual acceleration and 
angular velocity axis at each point for each curve from 0 to 100 percent 
was averaged to create ensemble curves for all axes of interest. Positive 
linear acceleration impact peaks following initial contact during the first 
25 % of stance for ML, V, and 3-dimentional resultant (R) acceleration 
were identified, while the negative peaks following initial contact dur-
ing the first 25 % of stance were similarly identified for AP acceleration. 
Similarly for angular velocity peaks, positive frontal plane peaks during 
the first 25 % of stance were identified because of their relationship to 
estimates of varus thrust (Tsukamoto et al., 2021) and maximum abso-
lute sagittal plane peaks during the first 25 % of stance were identified as 
reductions in sagittal plane measures have been associated with knee OA 
progression (Boekesteijn et al., 2022). However, the transverse angular 
velocities were not analyzed as they are not currently linked to any 
clinical outcomes (Kobsar et al., 2020b). For each collection day, 
ensemble curves, discrete gait variables (i.e., impact peaks), and 
spatiotemporal variables were obtained to assess the reliability of the 
wearable sensors across four collections. Gait speed was estimated by 
calculating stride length (eq. (1) and dividing by stride time. First, stride 
length was calculated using the inverted pendulum model, such that. 

Stride length = 2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2lh − h2

√
(1)  

where h is change in vertical displacement of the center of mass of the 
truck and l is leg length, estimated by multiplying subject height by 0.5. 

2.4. Statistical analysis 

Reliability was assessed on ensemble waveforms, discrete peaks, and 
spatiotemporal variables. For each participant, comparisons were 
grouped by most affected and less affected side, as defined by Kellgren/ 
Lawrence (K/L) grading of radiographic osteoarthritis (Kellgren and 
Lawrence, 1957). The reliability of the gait waveforms was assessed via 
the correlation of multiple correlation (CMC) (Ferrari et al., 2010) and 

also examined across the first 10, 20, 50 and 100 strides to understand 
how reliability changes with the inclusion of additional strides. 

Similarly, the between day reliability of discrete peaks and spatio-
temporal variables were assessed using an ICC(2,k). The ICC(2,k) was 
calculated for the first 10, 20, 50 and 100 peaks for the discrete peaks (i. 
e., mediolateral, vertical, anteroposterior, and resultant accelerations, 
frontal plane and sagittal plane angular velocity) and the spatiotemporal 
outcomes (i.e., stance time, swing time, stride time, and cadence). For 
both CMC and ICC, reliability was defined as < 0.5, 0.50–0.75, 
0.75–0.90, and 0.90 + relating to poor, fair, good, and excellent, 
respectively. Mean and standard deviation (SD) were calculated for each 
discrete peak variable and spatiotemporal outcome 10, 20, 50 and 100 
strides for each day. The standard error of the mean (SEM, eq. (3) (Rose 
et al., 2023) and minimal detectable change (MDC, eq. (3) (Washabaugh 
et al., 2017) were calculated as: 

SEM = SD*
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ICC

√
(2)  

MDC = SEM x Zn x
̅̅̅
2

√
(3)  

where SD is the standard deviation of all days for a given variable and Zn 
corresponds to the Z-score for a given confidence interval. The MDC was 
calculated at 95 % and 80 % confidence intervals for each variable 
(MDC95 and MDC80, respectively). 

3. Results 

Patients’ K/L grade for the most affected knee ranged from 2 to 4 
(Table 1). Five of nine patients had unilateral knee OA knee pain, while 
four of nine with bilateral knee OA pain had one knee rated as a worse 
K/L grade. Across the four study visits, patient reported NPRS pain 
ranged from 0 to 10 with an overall average of 5.3 ± 2.6, reflecting that 
pain levels were relatively stable between visits (Table 2). Similarly, gait 
speed across all four visits averaged 1.02 ± 0.16 m/s (mean absolute 
difference 0.17 m/s). Taken together, pain and gait speed were stable 
and therefore should not affect analysis of reliability. 

For inertial sensor waveforms, reliability generally ranged from 
good-to-excellent for all axes (Table 3). ML acceleration demonstrated 
good reliability for both most affected (CMC100 = 0.90) and less affected 
limbs (CMC100 = 0.87). Frontal plane angular velocity waveform reli-
ability ranged from 0.73 to 0.79 for both most affected and less affected 
sides. Including addition strides for frontal plane angular velocity 
resulted in a modest improvement towards good reliability (Fig. 2; most 
affected: CMC10 = 0.75, CMC100 = 0.81; less affected: CMC10 = 0.73, 
CMC100 = 0.79). V, AP, and R accelerations, in addition to sagittal plane 

Fig. 1. Illustration of sensor placement and outdoor collection area.  
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angular velocity, all demonstrated excellent reliability ranging from 
0.93 to 0.96 for all included strides levels (Supplemental Digital Content 
1). Supplemental Digital Content 1 also includes individual plots for 
each axis for each individual patient. 

Similar results were seen for discrete gait variables for more affected 
and less affected sides (Table 3; statistics for left and right side are 
provided in Supplemental Digital Content 2). Reliability was good-to- 
excellent, with ICC(2,k) values ranging from 0.89 to 0.98 across all var-
iables and stride inclusion levels, except for frontal plane angular ve-
locity. Despite showing good reliability with increasing number of 
strides included, the reliability of frontal plane angular velocity was 
substantially lower on the more affected side (CMC100 = 0.66) as 
compared to the less affected side (CMC100 = 0.83). The means for each 
visit for all axes are well below all calculated MDCs.. 

For spatiotemporal variables, stance time, swing time, and stride 
time had high reliability for both more affected and less affected sides 
(Table 4; statistics for left and right side are provided in Supplemental 
Digital Content 2). For these variables, ICC(2,k) ranged from 0.90 to 0.97. 
While there were limited changes in reliability by increasing stride in-
clusion levels, the confidence intervals for all variables narrowed. All 
means for all variables are well below all calculated MDCs. 

4. Discussion 

The purpose of this study was to evaluate the reliability of wearable 
sensor data collected across multiple days in out-of-lab settings in a knee 
OA population. As expected, these findings show that despite variable 
levels of pain, that the reliability of waveforms, discrete outcome vari-
ables, and spatiotemporal variables generally exhibit good-to-excellent 
reliability. While there is additional work to be done in ensuring 
wearable sensor reliability for out-of-lab data collections (e.g., free- 
living collections over several days), the findings from this study sug-
gest that for most axes (i.e., non-frontal plane axes), the underlying 
waveforms, discrete peak gait variables, and spatiotemporal variables 
demonstrate at least good reliability over multiple collections in a 
population of older adults with symptomatic knee osteoarthritis. 

It was hypothesized that waveform reliability would remain rela-
tively stable even at higher stride inclusion levels. Our results supported 
this hypothesis as all acceleration variables were shown to have good-to- 
excellent reliability for all stride inclusion levels. This finding is similar 
to other in-lab gait studies with wearable sensors that have reported 
higher reliability in V and AP acceleration axes and somewhat reduced 
reliability in the ML acceleration axis (Buckley et al., 2019; Ruder et al., 
2022). Frontal plane angular velocity waveforms were shown to have 
good reliability at higher stride levels, with modest improvements for 
both more affected and less affected sides. The improved reliability of 
the frontal plane angular velocity at the highest stride inclusion levels is 
also promising, as this axis tends to be lower reliability when collected in 
laboratory settings (Ruder et al., 2022), and given this axis has been 
used as a proxy for varus thrust, continued improvement of the reli-
ability of this axis is critical for monitoring progression (Chang et al., 

2004, 2013; Costello et al., 2020). While this reduced reliability remains 
a challenge for utilizing this outcome to compare changes following an 
intervention, future research may look to examine these fluctuations 
over the course of several days of free-living data to better understand 
this problem. 

Alternatively, it was also hypothesized that the reliability of discrete 
peaks would improve with more strides included in the analysis. How-
ever, discrete peak reliability was shown to be excellent across all stride 
inclusion levels for all acceleration variables. Interestingly, frontal plane 
angular velocity peaks only achieved fair reliability in the more affected 
limb, while good reliability was observed in the less affected limb. This 
was clearly the most prominent distinction between more and less 
affected limbs. Further, as previously discussed, while this may speak to 
its potential clinical utility, it also highlights the challenges in effectively 
tracking this potentially volatile outcome. 

Spatiotemporal variables demonstrated stable, excellent reliability 
across all variables and stride inclusion levels. The results from spatio-
temporal variables are consistent with previous findings from Ader, 
et al. (Motti Ader et al., 2021), who found that gait variability from 
spatiotemporal variables from wearable sensors can be established with 
at least 6 gait cycles. As this study used a minimum of 10 gait cycles, it is 
not surprising that increasing the number of gait cycles does not 
considerably improve the already excellent reliability of these measures. 
However, it should be noted that the Ader et al., assessed over three 30- 
meter walking assessments, whereas this study was able to see highly 
reliable gait parameters over a 6-minute walk and over four separate 
data collections. 

While the results of this study were mostly expected, this study was 
completed outside of a controlled laboratory environment and was 
conducted in a manner that was semi-controlled level walking. Patients 
were able to walk on level ground at their own self-selected pace, which 
in turn allowed for consistent waveforms, peak gait outcomes, and 
spatiotemporal outcomes. Therefore, it is likely that there were minimal 
changes even when including up to 100 strides and mostly consistent 
with similar in-lab studies as well as similar semi-controlled out-of-lab 
studies (Motti Ader et al., 2021; Storm et al., 2016). As noted in other 
related gait biomechanics research (e.g. Parkinson’s disease, running), 
how patients move is not captured from in-lab collection and real-world 
data collection is necessary (Benson et al., 2022; Bouça-Machado et al., 
2020). This study represents an initial step to move data collection 
outside of the in-lab setting, but there remains a need and opportunity 
for truly free-living assessments outside of the controlled laboratory 
setting. 

This study has several limitations that must be noted. While the 
motivation of this study was to provide additional evidence for longer, 
out-of-lab collections, the protocol for each collection was limited to just 
6 min of uncontrolled walking. This analysis provides many more strides 
in comparison to traditional in-lab gait analysis (e.g., 10 strides vs 100 
strides), but each collection was completed on a single day and a single 
walking bout. Within symptomatic osteoarthritis patients, pain may 
vary drastically day-to-day or even within a day, and a single 6-minute 

Table 2 
Numerical pain rating scale (NPRS) pain data for all patients’ visits, with mean, standard deviation (SD), minimum, and maximum values.  

Patient ID Visit 1 Visit 2 Visit 3 Visit 4 Patient Mean (SD) Minimum Maximum 

1 3 5 6 7 5.3 (1.7) 3 7 
2 7 6 6 6 6.3 (0.5) 6 7 
3 6 8 9 9 8.0 (1.4) 6 9 
4 5 5 7 7 6.0 (1.2) 5 7 
5 0 0 0 0 0.0 (0.0) 0 0 
6 5 0 8 7 5.0 (3.6) 0 8 
7 3 2 4 * 3.0 (1.0) 2 4 
8 5 5 5 5 5.0 (0.0) 5 5 
9 10 10 5 10 8.8 (2.5) 5 10 
Visit Mean (SD) 4.9 (2.8) 4.6 (3.4) 5.6 (2.6) 6.4 (3.0) 5.3 (2.6) 0 10  

* Pain survey data missing. 
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Table 3 
Day-to-day reliability for each side at different step inclusion levels, assessed by coefficient of multiple correlation (for waveforms) and intraclass correlation coefficient (for each discreate variables of interest) between 
visits 1–4. Mean and standard deviation (SD) were calculated for each day. Coefficient of multiple correlation (CMC) indicate for each axis of interest demonstrates high degree of correlation between signals across all visits 
while intraclass correlation coefficients (ICC) indicates high degree of correlation between most discrete variable measures. The standard error of the mean (SEM) and minimal detectible change (MDC) was calculated at 
95% and 80% confidence intervals for each variable (MDC95 and MDC80, respectively). The means for each visit for all axes are less than MDC80 and MDC95.  

Variable Name Side Steps CMC ICC Day 1 Mean (SD) Day 2 Mean (SD) Day 3 Mean (SD) Day 4 Mean (SD) SEM MDC95 MDC80 

ML Acceleration (m/s2) More Affected 10  0.85 0.93 (0.82–0.98) 14.05 (5.91) 14.98 (7.74) 15.63 (7.81) 14.93 (5.98)  1.72  4.76  3.11 
20  0.87 0.94 (0.82–0.98) 14.65 (6.82) 15.34 (7.71) 14.59 (6.62) 14.72 (6.09)  1.66  4.59  3.00 
50  0.89 0.94 (0.82–0.98) 14.47 (6.41) 15.71 (7.40) 14.70 (6.66) 14.53 (5.97)  1.60  4.44  2.91 
100  0.90 0.92 (0.79–0.98) 14.84 (6.25) 15.61 (7.10) 15.03 (6.63) 14.21 (5.56)  1.71  4.74  3.10 

Less Affected 10  0.83 0.95 (0.84–0.99) 16.89 (10.46) 16.37 (9.43) 12.21 (6.19) 14.12 (7.61)  1.96  5.43  3.55 
20  0.84 0.95 (0.85–0.99) 16.94 (10.11) 16.56 (10.06) 12.22 (6.04) 14.01 (7.45)  1.92  5.33  3.48 
50  0.85 0.96 (0.87–0.99) 16.63 (9.52) 16.45 (9.55) 12.08 (6.13) 14.24 (7.73)  1.69  4.68  3.06 
100  0.87 0.95 (0.86–0.99) 16.71 (9.39) 16.22 (9.20) 12.07 (5.98) 14.24 (7.32)  1.70  4.72  3.09 

V Acceleration (m/s2) More Affected 10  0.95 0.95 (0.86–0.99) 29.00 (6.36) 29.78 (10.47) 30.05 (13.10) 27.62 (8.14)  2.17  6.02  3.94 
20  0.95 0.94 (0.84–0.99) 29.75 (7.17) 30.15 (10.61) 30.10 (13.33) 28.09 (8.32)  2.34  6.48  4.24 
50  0.95 0.94 (0.83–0.98) 29.36 (6.66) 30.70 (11.14) 29.88 (13.74) 28.01 (8.13)  2.50  6.92  4.52 
100  0.95 0.94 (0.84–0.98) 29.42 (6.81) 30.36 (10.58) 29.96 (13.93) 27.72 (7.60)  2.39  6.62  4.33 

Less Affected 10  0.94 0.96 (0.89–0.99) 30.58 (10.81) 29.07 (12.11) 31.28 (15.96) 30.34 (16.65)  2.72  7.53  4.93 
20  0.94 0.96 (0.90–0.99) 31.31 (10.62) 29.73 (12.50) 31.24 (15.88) 30.53 (16.87)  2.58  7.15  4.67 
50  0.94 0.97 (0.91–0.99) 31.14 (10.91) 30.06 (12.35) 31.32 (16.17) 31.12 (17.39)  2.46  6.81  4.45 
100  0.95 0.98 (0.93–0.99) 31.22 (11.41) 30.24 (12.21) 31.29 (15.83) 30.86 (16.66)  2.13  5.90  3.86 

AP Acceleration (m/s2) More Affected 10  0.94 0.90 (0.73–0.97) 13.27 (4.28) 12.14 (5.35) 11.76 (6.26) 11.53 (4.86)  1.60  4.43  2.90 
20  0.94 0.89 (0.71–0.97) 13.62 (4.48) 12.31 (5.55) 11.74 (6.57) 11.87 (5.45)  1.75  4.85  3.17 
50  0.95 0.89 (0.71–0.97) 13.34 (4.71) 12.39 (5.49) 11.58 (6.99) 11.68 (5.00)  1.76  4.88  3.19 
100  0.95 0.90 (0.73–0.97) 13.43 (4.59) 12.14 (5.35) 11.43 (6.95) 11.55 (4.85)  1.68  4.66  3.05 

Less Affected 10  0.94 0.93 (0.82–0.98) 13.56 (5.53) 12.36 (5.53) 12.63 (5.23) 11.19 (7.01)  1.45  4.02  2.63 
20  0.94 0.93 (0.82–0.98) 13.77 (5.42) 12.52 (5.55) 12.68 (5.51) 11.52 (7.03)  1.48  4.10  2.68 
50  0.95 0.95 (0.86–0.99) 13.74 (5.48) 12.77 (5.91) 12.51 (5.86) 11.36 (6.26)  1.27  3.53  2.31 
100  0.96 0.95 (0.87–0.99) 13.44 (5.64) 12.84 (5.98) 12.65 (6.23) 11.03 (6.14)  1.26  3.48  2.28 

R Acceleration (m/s2) More Affected 10  0.94 0.97 (0.91–0.99) 35.35 (9.28) 34.49 (13.74) 34.07 (14.48) 33.36 (11.11)  2.09  5.78  3.78 
20  0.95 0.96 (0.88–0.99) 36.23 (9.42) 35.23 (14.06) 34.41 (14.91) 33.49 (11.05)  2.47  6.85  4.48 
50  0.96 0.96 (0.90–0.99) 35.83 (9.05) 35.98 (14.48) 34.52 (15.49) 34.09 (11.60)  2.35  6.52  4.26 
100  0.96 0.96 (0.90–0.99) 36.09 (9.04) 35.84 (13.89) 34.71 (15.76) 33.68 (11.55)  2.31  6.40  4.19 

Less Affected 10  0.93 0.97 (0.92–0.99) 37.85 (14.57) 36.65 (15.09) 36.46 (17.34) 37.04 (19.15)  2.69  7.46  4.88 
20  0.93 0.97 (0.93–0.99) 38.48 (13.77) 37.25 (15.48) 36.17 (17.36) 37.15 (19.68)  2.58  7.15  4.67 
50  0.94 0.98 (0.94–0.99) 38.43 (14.09) 37.30 (15.21) 36.62 (17.40) 37.76 (19.83)  2.42  6.72  4.39 
100  0.94 0.98 (0.95–1.00) 38.59 (14.38) 37.30 (14.89) 36.69 (17.69) 37.36 (18.95)  2.22  6.15  4.02 

Frontal Plane Angular 
Velocity (degrees/ 
second) 

More Affected 10  0.74 0.61 (-0.05–0.90) 83.84 (43.94) 67.14 (20.36) 66.47 (26.53) 85.95 (50.31)  22.97  63.67  41.63 
20  0.77 0.63 (0.00–0.90) 89.18 (39.44) 68.15 (21.87) 67.40 (27.38) 87.72 (54.33)  23.07  63.96  41.82 
50  0.77 0.67 (0.13–0.92) 87.11 (35.99) 65.29 (18.83) 67.50 (29.22) 85.41 (55.50)  21.27  58.96  38.55 
100  0.81 0.66 (0.09–0.91) 84.45 (34.41) 66.27 (16.51) 66.67 (27.92) 82.82 (51.92)  20.13  55.79  36.48 

Less Affected 10  0.73 0.81 (0.47–0.95) 81.98 (46.37) 65.63 (25.10) 81.25 (36.15) 84.66 (69.28)  20.02  55.48  36.28 
20  0.76 0.84 (0.57–0.96) 86.54 (43.25) 68.13 (29.88) 74.47 (39.77) 86.01 (70.23)  18.45  51.14  33.44 
50  0.78 0.84 (0.56–0.96) 82.46 (35.87) 63.35 (27.22) 73.75 (38.44) 85.34 (67.76)  17.75  49.20  32.17 
100  0.79 0.83 (0.53–0.96) 79.75 (36.95) 58.15 (25.09) 75.25 (38.74) 83.17 (64.91)  17.97  49.80  32.56  
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Fig. 2. Representative ensemble curve for frontal plane angular velocity showing narrowing of confidence intervals when using 10, 20, 50 and 100 strides. Each line 
is the mean from a data collection day, with shading representing the standard deviation (Day 1 - green, Day 2 - orange, Day 3 - purple, Day 4 - fushia). Full plots for 
each axis at each stride inclusion level are shown in Supplemental Digital Content 1. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 4 
Day-to-day reliability spatiotemporal parameters for each side at different step inclusion levels, assessed by intraclass correlation coefficient visits 1–4. Intraclass 
correlation coefficients (ICC) indicates high degree of correlation between for all spatiotemporal variables. Mean and standard deviation (SD) were calculated for each 
day. The standard error of the mean (SEM) and minimal detectible change was calculated at 95% and 80% confidence intervals for each variable (MDC95 and MDC80, 
respectively). The means for each visit for all parameters are less than MDC80 and MDC95.  

Variable Name Side Steps ICC Day 1 Mean (SD) Day 2 Mean (SD) Day 3 Mean (SD) Day 4 Mean (SD) SEM MDC95 MDC80 

Stance Time 
(seconds) 

More Affected 10 0.95 (0.87–0.99) 0.64 (0.06) 0.66 (0.09) 0.64 (0.08) 0.65 (0.05)  0.02  0.06  0.04 
20 0.96 (0.9–0.99) 0.64 (0.06) 0.66 (0.09) 0.64 (0.08) 0.65 (0.05)  0.02  0.06  0.04 
50 0.97 (0.91–0.99) 0.65 (0.06) 0.66 (0.09) 0.65 (0.08) 0.65 (0.05)  0.02  0.05  0.03 
100 0.97 (0.91–0.99) 0.65 (0.06) 0.66 (0.09) 0.65 (0.08) 0.66 (0.05)  0.02  0.05  0.03 

Less Affected 10 0.93 (0.81–0.98) 0.65 (0.05) 0.68 (0.08) 0.64 (0.07) 0.67 (0.06)  0.02  0.06  0.04 
20 0.93 (0.82–0.98) 0.65 (0.05) 0.68 (0.08) 0.65 (0.07) 0.66 (0.06)  0.02  0.05  0.04 
50 0.96 (0.89–0.99) 0.66 (0.05) 0.67 (0.07) 0.65 (0.07) 0.66 (0.06)  0.02  0.05  0.03 
100 0.97 (0.91–0.99) 0.66 (0.05) 0.68 (0.07) 0.66 (0.07) 0.67 (0.06)  0.02  0.05  0.03 

Swing Time 
(seconds) 

More Affected 10 0.90 (0.72–0.97) 0.47 (0.02) 0.48 (0.03) 0.47 (0.02) 0.48 (0.03)  0.01  0.04  0.03 
20 0.92 (0.77–0.98) 0.47 (0.02) 0.47 (0.04) 0.47 (0.03) 0.48 (0.03)  0.01  0.04  0.02 
50 0.94 (0.83–0.98) 0.47 (0.02) 0.47 (0.04) 0.47 (0.03) 0.48 (0.03)  0.01  0.03  0.02 
100 0.94 (0.84–0.99) 0.47 (0.02) 0.47 (0.04) 0.47 (0.03) 0.48 (0.03)  0.01  0.03  0.02 

Less Affected 10 0.93 (0.81–0.98) 0.46 (0.02) 0.46 (0.05) 0.46 (0.03) 0.46 (0.03)  0.02  0.05  0.03 
20 0.94 (0.84–0.99) 0.46 (0.03) 0.46 (0.05) 0.47 (0.03) 0.46 (0.03)  0.02  0.05  0.03 
50 0.94 (0.84–0.99) 0.46 (0.03) 0.46 (0.05) 0.47 (0.03) 0.46 (0.03)  0.01  0.04  0.02 
100 0.94 (0.83–0.98) 0.46 (0.03) 0.46 (0.05) 0.47 (0.03) 0.46 (0.03)  0.01  0.03  0.02 

Stride Time 
(seconds) 

More Affected 10 0.94 (0.85–0.99) 1.11 (0.07) 1.14 (0.13) 1.11 (0.09) 1.13 (0.07)  0.01  0.02  0.02 
20 0.95 (0.87–0.99) 1.11 (0.08) 1.14 (0.13) 1.11 (0.09) 1.13 (0.07)  0.01  0.02  0.02 
50 0.97 (0.91–0.99) 1.12 (0.08) 1.13 (0.12) 1.12 (0.10) 1.13 (0.07)  0.01  0.02  0.01 
100 0.97 (0.91–0.99) 1.12 (0.07) 1.14 (0.12) 1.12 (0.10) 1.13 (0.07)  0.01  0.02  0.01 

Less Affected 10 0.94 (0.85–0.99) 1.11 (0.07) 1.14 (0.12) 1.11 (0.10) 1.13 (0.07)  0.01  0.02  0.02 
20 0.95 (0.88–0.99) 1.11 (0.08) 1.14 (0.12) 1.11 (0.09) 1.13 (0.07)  0.01  0.02  0.01 
50 0.97 (0.91–0.99) 1.12 (0.08) 1.13 (0.12) 1.12 (0.10) 1.13 (0.07)  0.01  0.02  0.01 
100 0.97 (0.91–0.99) 1.12 (0.08) 1.14 (0.12) 1.12 (0.10) 1.13 (0.07)  0.01  0.02  0.02 

Cadence (steps/minute) 10 0.95 (0.87–0.99) 108.32 (7.03) 106.57 (10.97) 109.17 (9.53) 106.52 (6.72) 1.83  5.07  3.31 
20 0.96 (0.89–0.99) 108.32 (7.31) 106.69 (10.89) 108.73 (9.47) 106.82 (7.18) 1.69  4.69  3.06 
50 0.97 (0.92–0.99) 108.00 (7.38) 107.15 (10.80) 108.16 (9.80) 106.94 (6.68) 1.45  4.02  2.63 
100 0.97 (0.92–0.99) 107.74 (7.21) 106.46 (10.49) 107.50 (9.79) 106.24 (6.75) 1.43  3.97  2.60  
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walking bout cannot capture potential changes in gait due to these 
fluctuations. It is critical that future studies further examine changes in 
biomechanics, including accelerations and angular velocities, out-of-lab 
over longer periods of time to account for these fluctuations. In addition 
to the short collection duration, the lower sample size of the study 
population likely does not fully capture the full range of accelerations 
and angular velocities in outside-of-lab osteoarthritic gait, and these 
results may not reflect the full range of patients experiencing pain 
related to knee osteoarthritis. While the limited sample size, lowered by 
COVID-19 restrictions at the time of research, caused us to miss addi-
tional patients, based on our results, the greatest impact would have 
likely narrowed the width of the confidence intervals. Nevertheless, this 
study showed the potential reliability across multiple days in a clinical 
population, and future studies examining outside-of-lab gait are 
encouraged to collect larger sample sizes to reflect this reality. 

In summary, this study provides evidence for the reliability of sen-
sors in a symptomatic knee osteoarthritis population as well as addi-
tional use within clinical settings for monitoring disease progression. 
This study demonstrated that wearable sensors have good-to-excellent 
reliability across a wide range of strides over multiple days outside of 
the traditional laboratory environment. The results support additional 
and increased data collection outside of the lab to more accurately 
quantify the biomechanics of clinical populations that has pain fluctu-
ations that may affect gait that would otherwise not be captured in 
shorter in-lab collections. 

CRediT authorship contribution statement 

Matthew C. Ruder: Conceptualization, Funding acquisition, Writing 
– original draft, Writing – review & editing, Visualization, Investigation, 
Validation, Formal analysis. Zaryan Masood: Conceptualization, Data 
curation, Writing – review & editing, Investigation, Methodology. Dylan 
Kobsar: Writing – review & editing, Validation, Supervision, Software, 
Resources, Project administration, Methodology, Investigation, Funding 
acquisition, Formal analysis, Conceptualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The McMaster Institute for Research on Aging (MIRA) provided 
salary support for MR and ZM. Smart Mobility for the Aging Population 
(sMAP) CREATE program provided salary support for MR and ZM. 
Arthritis Society of Canada provided salary support for MR through 
Training Graduate PhD Salary Award (TGP-22-0000000169). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jbiomech.2023.111818. 

References: 

Andriacchi, T.P., Favre, J., 2014. The Nature of In Vivo Mechanical Signals That 
Influence Cartilage Health and Progression to Knee Osteoarthritis. Curr. Rheumatol. 
Rep. 16, 463. https://doi.org/10.1007/s11926-014-0463-2. 

Bacon, K.L., Felson, D.T., Jafarzadeh, S.R., Kolachalama, V.B., Hausdorff, J.M., Gazit, E., 
Segal, N.A., Lewis, C.E., Nevitt, M.C., Kumar, D., Multicenter Osteoarthritis Study 
Investigators, 2022. Relation of gait measures with mild unilateral knee pain during 
walking using machine learning. Sci Rep. 12 (1), 22200. https://doi.org/10.1038/ 
s41598-022-21142-2. 
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Storm, F.A., Buckley, C.J., Mazzà, C., 2016. Gait event detection in laboratory and real 
life settings: Accuracy of ankle and waist sensor based methods. Gait Posture 50, 
42–46. https://doi.org/10.1016/j.gaitpost.2016.08.012. 

Tan, J.-S., Tippaya, S., Binnie, T., Davey, P., Napier, K., Caneiro, J.P., Kent, P., Smith, A., 
O’Sullivan, P., Campbell, A., 2022. Predicting knee joint kinematics from wearable 
sensor data in people with knee osteoarthritis and clinical considerations for future 
machine learning models. Sensors 22, 446. https://doi.org/10.3390/s22020446. 

Tsukamoto, H., Saito, K., Matsunaga, T., Iwami, T., Saito, H., Kijima, H., Akagawa, M., 
Komatsu, A., Miyakoshi, N., Shimada, Y., 2021. Diagnostic accuracy of the mobile 
assessment of varus thrust using nine-axis inertial measurement units. PRM 6. 
https://doi.org/10.2490/prm.20210009. 

Turcot, K., Aissaoui, R., Boivin, K., Hagemeister, N., Pelletier, M., De Guise, J.A., 2008. 
Test-retest reliability and minimal clinical change determination for 3-dimensional 
tibial and femoral accelerations during treadmill walking in knee osteoarthritis 
patients. Arch. Phys. Med. Rehabil. 89, 732–737. https://doi.org/10.1016/j. 
apmr.2007.09.033. 

Wang, C., Chan, P.P.K., Lam, B.M.F., Wang, S., Zhang, J.H., Chan, Z.Y.S., Chan, R.H.M., 
Ho, K.K.W., Cheung, R.T.H., 2020. Real-time estimation of knee adduction moment 
for gait retraining in patients with knee osteoarthritis. IEEE Trans. Neural Syst. 
Rehabil. Eng. 28, 888–894. https://doi.org/10.1109/TNSRE.2020.2978537. 

Washabaugh, E.P., Kalyanaraman, T., Adamczyk, P.G., Claflin, E.S., Krishnan, C., 2017. 
Validity and repeatability of inertial measurement units for measuring gait 
parameters. Gait Posture 55, 87–93. https://doi.org/10.1016/j. 
gaitpost.2017.04.013. 

Youn, I.-H., Youn, J.-H., Zeni, J., Knarr, B., 2018. Biomechanical gait variable estimation 
using wearable sensors after unilateral total knee arthroplasty. Sensors 18, 1577. 
https://doi.org/10.3390/s18051577. 

M.C. Ruder et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.knee.2009.05.003
https://doi.org/10.1016/j.gaitpost.2012.07.012
https://doi.org/10.1016/j.gaitpost.2021.01.010
https://doi.org/10.1016/j.gaitpost.2021.01.010
https://doi.org/10.1016/j.humov.2018.11.002
https://doi.org/10.1186/s12891-017-1434-3
https://doi.org/10.1186/s12891-017-1434-3
https://doi.org/10.1007/s11517-016-1537-2
https://doi.org/10.2196/33521
https://doi.org/10.2196/33521
https://doi.org/10.1002/acr.25096
https://doi.org/10.1002/acr.25096
https://doi.org/10.1016/j.jbiomech.2022.111263
https://doi.org/10.1016/j.jbiomech.2022.111263
https://doi.org/10.1191/0962280204sm365ra
https://doi.org/10.1002/acr.20380
https://doi.org/10.1016/j.gaitpost.2016.08.012
https://doi.org/10.3390/s22020446
https://doi.org/10.2490/prm.20210009
https://doi.org/10.1016/j.apmr.2007.09.033
https://doi.org/10.1016/j.apmr.2007.09.033
https://doi.org/10.1109/TNSRE.2020.2978537
https://doi.org/10.1016/j.gaitpost.2017.04.013
https://doi.org/10.1016/j.gaitpost.2017.04.013
https://doi.org/10.3390/s18051577

	Reliability of waveforms and gait metrics from multiple outdoor wearable inertial sensors collections in adults with knee o ...
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Protocol
	2.3 Data analysis
	2.4 Statistical analysis

	3 Results
	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References:


